58 research outputs found

    VectorBase: a data resource for invertebrate vector genomics

    Get PDF
    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data

    The Ontology for Parasite Lifecycle (OPL): towards a consistent vocabulary of lifecycle stages in parasitic organisms.

    Get PDF
    BACKGROUND: Genome sequencing of many eukaryotic pathogens and the volume of data available on public resources have created a clear requirement for a consistent vocabulary to describe the range of developmental forms of parasites. Consistent labeling of experimental data and external data, in databases and the literature, is essential for integration, cross database comparison, and knowledge discovery. The primary objective of this work was to develop a dynamic and controlled vocabulary that can be used for various parasites. The paper describes the Ontology for Parasite Lifecycle (OPL) and discusses its application in parasite research. RESULTS: The OPL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium. The first version of the OPL models complex life cycle stage details of a range of parasites, such as Trypanosoma sp., Leishmaniasp., Plasmodium sp., and Shicstosoma sp. In addition, the ontology also models necessary contextual details, such as host information, vector information, and anatomical locations. OPL is primarily designed to serve as a reference ontology for parasite life cycle stages that can be used for database annotation purposes and in the lab for data integration or information retrieval as exemplified in the application section below. CONCLUSION: OPL is freely available at http://purl.obolibrary.org/obo/opl.owl and has been submitted to the BioPortal site of NCBO and to the OBO Foundry. We believe that database and phenotype annotations using OPL will help run fundamental queries on databases to know more about gene functions and to find intervention targets for various parasites. The OPL is under continuous development and new parasites and/or terms are being added.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    In Vitro-Selected drug-resistant Varicella-Zoster Virus mutants in the thymidine kinase and DNA polymerase genes yield novel Phenotype-Genotype associations and highlight differences between antiherpesvirus drugs

    Get PDF
    Varicella zoster virus (VZV) is usually associated with mild to moderate illness in immunocompetent patients. However, older age and immune deficiency are the most important risk factors linked with virus reactivation and severe complications. Treatment of VZV infections is based on nucleoside analogues, such as acyclovir (ACV) and its valyl prodrug valacyclovir, penciclovir (PCV) as its prodrug famciclovir, and bromovinyldeoxyuridine (BVDU; brivudin) in some areas. The use of the pyrophosphate analogue foscarnet (PFA) is restricted to ACV-resistant (ACVr) VZV infections. Since antiviral drug resistance is an emerging problem, we attempt to describe the contributions of specific mutations in the viral thymidine kinase (TK) gene identified following selection with ACV, BVDU and its derivative BVaraU (sorivudine), and the bicyclic pyrimidine nucleoside analogues (BCNAs), a new class of potent and specific anti-VZV agents. The string of 6 Cs at nucleotides 493 to 498 of the VZV TK gene appeared to function as a hot spot for nucleotide insertions or deletions. Novel amino acid substitutions (G24R and T86A) in VZV TK were also linked to drug resistance. Six mutations were identified in the “palm domain” of VZV DNA polymerase in viruses selected for resistance to PFA, PCV, and the 2-phophonylmethoxyethyl (PME) purine derivatives. The investigation of the contributions of specific mutations in VZV TK or DNA polymerase to antiviral drug resistance and their impacts on the structures of the viral proteins indicated specific patterns of cross-resistance and highlighted important differences, not only between distinct classes of antivirals, but also between ACV and PC

    R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage

    Get PDF
    How DNA damage leads to chronic inflammation and tissue degeneration with aging remains to be fully resolved. Here, we show that DNA damage leads to cellular senescence, fibrosis, loss-of-tissue architecture, and chronic pancreatitis in mice with an inborn defect in the excision repair cross complementation group 1 (Ercc1) gene. We find that DNA damage-driven R-loops causally contribute to the active release and buildup of single-stranded DNAs (ssDNAs) in the cytoplasm of cells triggering a viral-like immune response in progeroid and naturally aged pancreata. To reduce the proinflammatory load, we developed an extracellular vesicle (EV)-based strategy to deliver recombinant S1 or ribonuclease H nucleases in inflamed Ercc1(−/−) pancreatic cells. Treatment of Ercc1(−/−) animals with the EV-delivered nuclease cargo eliminates DNA damage-induced R-loops and cytoplasmic ssDNAs alleviating chronic inflammation. Thus, DNA damage-driven ssDNAs causally contribute to tissue degeneration, Ercc1(−/−) paving the way for novel rationalized intervention strategies against age-related chronic inflammation

    Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage

    Get PDF
    DNA damage and metabolic disorders are intimately linked with premature disease onset but the underlying mechanisms remain poorly understood. Here, we show that persistent DNA damage accumulation in tissue-infiltrating macrophages carrying an ERCC1-XPF DNA repair defect (Er1(F/-)) triggers Golgi dispersal, dilation of endoplasmic reticulum, autophagy and exosome biogenesis leading to the secretion of extracellular vesicles (EVs) in vivo and ex vivo. Macrophage-derived EVs accumulate in Er1(F/-) animal sera and are secreted in macrophage media after DNA damage. The Er1(F/-) EV cargo is taken up by recipient cells leading to an increase in insulin-independent glucose transporter levels, enhanced cellular glucose uptake, higher cellular oxygen consumption rate and greater tolerance to glucose challenge in mice. We find that high glucose in EV-targeted cells triggers pro-inflammatory stimuli via mTOR activation. This, in turn, establishes chronic inflammation and tissue pathology in mice with important ramifications for DNA repair-deficient, progeroid syndromes and aging

    XPF interacts with TOP2B for R-loop processing and DNA looping on actively transcribed genes

    Get PDF
    Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage

    Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project

    Get PDF
    BACKGROUND: Open access to databases of information generated by the research community can synergize individual efforts and are epitomized by the genome mapping projects. Open source models for outputs of scientific research funded by tax-payers and charities are becoming the norm. This has yet to be extended to malaria epidemiology and control. METHODS: The exhaustive searches and assembly process for a global database of malaria parasite prevalence as part of the Malaria Atlas Project (MAP) are described. The different data sources visited and how productive these were in terms of availability of parasite rate (PR) data are presented, followed by a description of the methods used to assemble a relational database and an associated geographic information system. The challenges facing spatial data assembly from varied sources are described in an effort to help inform similar future applications. RESULTS: At the time of writing, the MAP database held 3,351 spatially independent PR estimates from community surveys conducted since 1985. These include 3,036 Plasmodium falciparum and 1,347 Plasmodium vivax estimates in 74 countries derived from 671 primary sources. More than half of these data represent malaria prevalence after the year 2000. CONCLUSION: This database will help refine maps of the global spatial limits of malaria and be the foundation for the development of global malaria endemicity models as part of MAP. A widespread application of these maps is envisaged. The data compiled and the products generated by MAP are planned to be released in June 2009 to facilitate a more informed approach to global malaria control

    De Novo assembly and transcriptome analysis of the mediterranean fruit fly ceratitis capitata early embryos

    Get PDF
    The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing geneticbased pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae
    corecore